An inexact alternating direction method with SQP regularization for the structured variational inequalities
نویسندگان
چکیده مقاله:
In this paper, we propose an inexact alternating direction method with square quadratic proximal (SQP) regularization for the structured variational inequalities. The predictor is obtained via solving SQP system approximately under significantly relaxed accuracy criterion and the new iterate is computed directly by an explicit formula derived from the original SQP method. Under appropriate conditions, the global convergence of the proposed method is proved. We show the $O(1/t)$ convergence rate for the inexact SQP alternating direction method. We also reported some numerical results to illustrate the efficiency of the proposed method.
منابع مشابه
An Inexact Proximal Alternating Directions Method For Structured Variational Inequalities∗
In this paper we propose an appealing inexact proximal alternating directions method (abbreviated as In-PADM) for solving a class of monotone variational inequalities with certain special structure, and this structure under consideration is common in practice. We prove convergence of In-PADM method while the inexact term is arbitrary but satisfied some suitable conditions. For solving the varia...
متن کاملProximal Parallel Alternating Direction Method for Monotone Structured Variational Inequalities
In this paper, we focus on the alternating direction method, which is one of the most effective methods for solving structured variational inequalities(VI). In fact, we propose a proximal parallel alternating direction method which only needs to solve two strongly monotone sub-VI problems at each iteration. Convergence of the new method is proved under mild assumptions. We also present some pre...
متن کاملA New Alternating Direction Method for Structured Variational Inequalities in Engineering Modeling
Recently, the alternating direction method(ADM) has gained tremendous interest in the area of applied sciences, such as the image processing, and matrix decomposition. In this paper, we propose a new alternating direction method for structured variational inequalities, which only needs functional values in the solution process. We give a new residual function r(u, β), and based on it a new desc...
متن کاملInexact Alternating Direction Method for Variational Inequality Problems with Linear Equality Constraints
In this article, a new inexact alternating direction method(ADM) is proposed for solving a class of variational inequality problems. At each iteration, the new method firstly solves the resulting subproblems of ADM approximately to generate an temporal point x̃, and then the multiplier y is updated to get the new iterate y. In order to get x, we adopt a new descent direction which is simple comp...
متن کاملAn Alternating Direction Implicit Method for Modeling of Fluid Flow
This research includes of the numerical modeling of fluids in two-dimensional cavity. The cavity flow is an important theoretical problem. In this research, modeling was carried out based on an alternating direction implicit via Vorticity-Stream function formulation. It evaluates different Reynolds numbers and grid sizes. Therefore, for the flow field analysis and prove of the ability of the sc...
متن کاملAn inexact proximal algorithm for variational inequalities
This paper presents a new inexact proximal method for solving monotone variational inequality problems with a given separable structure. The resulting method combines the recent proximal distances theory introduced by Auslender and Teboulle (2006) with a decomposition method given by Chen and Teboulle that was proposed to solve convex optimization problems. This method extends and generalizes p...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 8 شماره 1
صفحات 269- 289
تاریخ انتشار 2017-04-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023